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Abstract

The rapid increase in the size of data sets makes clustering all the more important to
capture and summarize the information, at the same time making clustering more difficult
to accomplish. If model-based clustering is applied directly to a large data set, it can be too
slow for practical application. A simple and common approach is to first cluster a random
sample of moderate size, and then use the clustering model found in this way to classify
the remainder of the objects. We show that, in its simplest form, this method may lead to
unstable results. Our experiments suggest that a stable method with better performance
can be obtained with two straightforward modifications to the simple sampling method:
several tentative models are identified from the sample instead of just one, and several
EM steps are used rather than just one E step to classify the full data set. We find
that there are significant gains from increasing the size of the sample up to about 2,000,
but not from further increases. These conclusions are based on the application of several
alternative strategies to the segmentation of three different multispectral images, and to
several simulated data sets.

Keywords: EM algorithm; MRI image; Remote sensing; Sampling
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1 Introduction

Today, data are generated at unprecedented speed. The growing size of data sets and data
bases has increased the need for good clustering methods to capture and summarize the in-
formation. An example is the segmentation of multispectral images, where the objective is
to group similar pixels, and to assess how many different groups there are. Typically, three
to ten congruent images or bands containing complementary information are recorded, of-
ten containing tens of thousands of pixels per image. This places constraints on clustering
techniques with respect to memory usage and computing time.

Many different clustering methods have been described (Jain and Dubes 1988; Kaufman
and Rousseeuw 1989). Model-based clustering (McLachlan and Basford 1988; Banfield and
Raftery 1993; Fraley and Raftery 2002b; McLachlan and Peel 2000) is one of the more recent
developments, and has shown very good performance in a number of fields (Mukherjee,
Feigelson, Babu, Murtagh, Fraley, and Raftery 1998; Dasgupta and Raftery 1998; Yeung,
Fraley, Murua, Raftery, and Ruzzo 2001; Wang and Raftery 2002), including image analysis
(Campbell, Fraley, Murtagh, and Raftery 1997; Campbell, Fraley, Stanford, Murtagh, and
Raftery 1999; Stanford and Raftery 2002; Wehrens, Simonetti, and Buydens 2002). As
implemented in these applications, and in available software (?; McLachlan, Peel, Basford,
and Adams 1999; Fraley and Raftery 2002a), model-based clustering consists of fitting a
mixture of multivariate normal distributions to a data set by maximum likelihood using
the EM algorithm, possibly with geometric constraints on the covariances matrices, and an
additional component to allow for outliers or noise. Since the likelihood surface typically
has many local maximna, initialization of the EM algorithm is a very important issue.
Model-based hierarchical clustering (Banfield and Raftery 1993) has been found to provide
good initializations.

Model-based hierarchical clustering generally requires storage and computing time at
least proportional to the square of the dimension of the data, so that both space and time
are limiting factors in its application to large data sets. Another problem is that when
the size of the data set reaches a certain threshold, it is not possible to keep all of the
required quantities in memory at the same time, forcing a dramatic and abrupt increase
in necessary computational resources. This threshold varies with computer hardware and
software, and data dimension, but at the current time it is typically on the order of several
thousand objects.

Various approaches to the problem of clustering large data sets have been proposed,
including initialization by clustering a sample of the data (Banfield and Raftery 1993;
Fayyad and Smyth 1996; Maitra 2001), and using an initial crude partitioning of the entire
data set (Posse 2001; Tantrum, Murua, and Stuetzle 2002). The simplest and perhaps most
widely applied approach is to apply the clustering method first to a small simple random
sample from the data, and then apply the resulting estimated model to the full data set
using discriminant analysis (Banfield and Raftery 1993). The discriminant analysis can be
carried out very easily in the model-based clustering framework by using a single E step
(Fraley and Raftery 2002b).

Unfortunately, this easily implemented strategy may lead to unstable segmentations
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Figure 1: Segmentations based on clustering of samples of 500 pixels of a set of four
congruent MRI images of a patient with a brain tumour. Colors are permuted to give
maximal visual similarity.

when used in its simplest form, as illustrated in Figure 1. In this figure, ten random
samples of 500 pixels are used to cluster an MRI data set of a patient with a brain tumour.
The number of clusters, selected by the method (see below), varies between 4 and 9.
Although several features are preserved, such as the tumour region (in dark blue, behind
the eye) and the cerebrospinal fluid (green), the variation is quite large.

In this paper we show that the appealingly simple approach based on clustering a sam-
ple of the data can be modified to give good and stable results, with two straightforward
changes. For the image data sets we consider, we obtain good results by tentatively se-
lecting several models based on the sample rather than just one, and by running several
EM steps on the full data set rather than just one E step. We find that performance
improves when the size of the sample is increased up to about 2,000, but that beyond that
there is little gain. To reach this conclusion, we considered a range of sample sizes and
several strategies of varying computational cost. Comparisons were based on three typical
real-world data sets, and several realistic simulations.

In Section 2, we give a brief overview of model-based clustering, and in Section 3 we
propose several strategies for model-based clustering in large data sets such as those that
arise in image segmentation. The image data we use and the design of our simulations
is described in Section 4. Segmentations using different sample sizes and strategies are
compared in Section 5 based on the likelihoods of the segmented images, the stability of the
clusters, and the accuracy of the results in the simulated cases. Finally, recommendations
are made.
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2 Model-Based Clustering

In model-based clustering, individual clusters are described by multivariate normal distri-
butions, where the class labels, parameters and proportions are unknown. Maximum likeli-
hood estimates for the resulting model can be obtained using the Expectation-Maximization
(EM) algorithm (Dempster, Laird, and Rubin 1977; McLachlan and Krishnan 1997). Given
an initial guess for the cluster means µk, covariances Σk, and proportions τk for all clusters,
one can calculate the conditional probability that object i belongs to cluster k:

zik = τkφk(xi|µk,Σk)/
K∑
j=1

τjφj(xi|µj,Σj, τj) ,

where φ is the multivariate normal (Gaussian) density. This is the expectation step, or
E-step of the EM algorithm. The maximization step (M-step) consists of estimating the
parameters µ,Σ, and τ , from the data and the conditional probabilities zik. The E- and
M-steps iterate until convergence. Finally, each object is classified in the class in which it
has the highest conditional probability.

Good initialization of the EM algorithm is very important, since the method may
converge to different values depending on where it is started because the likelihood surface
usually has multiple local maxima. For the initialization, we apply fast hierarchical model-
based clustering (Fraley 1998), the default in the mclust software (?; Fraley and Raftery
2002a).

If there are no cross-cluster constraints on the cluster shapes and sizes, each one is
described by 1 + p+ p(p+ 1)/2 parameters (the proportion, mean and covariance matrix,
respectively). The covariance matrix for the kth cluster can be expressed in the form

Σk = λkDkAkD
T
k (1)

where λk describes the volume of the cluster, Dk is the matrix of eigenvectors, governing
the orientation of the cluster, and Ak is a diagonal matrix, proportional to the eigenvalues,
which determines the shape of the cluster. Banfield and Raftery (1993) proposed cross-
cluster equality constraints on any or all of the cluster volumes, orientations or shapes based
on this decomposition as a way of limiting the number of parameters in the model in a
geometrically intuitive way. One such model constrains all clusters to have the same shape,
but allows cluster volumes and orientation to vary. This is called the VEV model (Fraley
and Raftery 1999) (Variable volume, Equal shape, Variable orientation). A completely
unconstrained model is denoted by VVV (Fraley and Raftery 1999). For a discussion of
all possible combinations of constraints based on the decomposition (1), see Celeux and
Govaert (1995). Each set of constraints corresponds to a different clustering criterion: for
example, if the clusters are restricted to be spherical and identical in volume, the criterion
is the same as that used in Ward’s clustering and standard k-means clustering (Celeux and
Govaert 1995; Fraley and Raftery 1998).

The model-based clustering framework can be extended in a natural way to model noise
and outliers (Banfield and Raftery 1993; Fraley and Raftery 2002b): an extra “noise” class

3



is described by a constant component density over the whole data region. If the densities
of all other components are lower than the density of the noise class, an object will be
classified as noise. This corresponds to modelling the noise with a homogeneous Poisson
process. An initial estimate of the noise is needed.

To select the optimal clustering model (defined by both the cross-cluster constraints
and the number of clusters), several measures have been proposed (for an overview, see e.g.
McLachlan and Peel 2000). In several applications, the BIC approximation to the Bayes
factor (Schwarz 1978; Kass and Raftery 1995) has performed quite well (Fraley and Raftery
1998; Dasgupta and Raftery 1998; Stanford and Raftery 2000). The strategy employed
here thus consists of several steps (Fraley and Raftery 1998): first perform model-based
hierarchical clustering for initialization; then perform EM for several values of the number
of clusters and with several sets of constraints on the covariance matrices of the clusters;
finally, select the combination of model and number of groups that leads to the highest
BIC value.

The model-based clustering framework also provides a measure of the certainty of a
particular classification. Basically, a classification has low uncertainty if one of the k
conditional cluster membership probabilities for each data point is close to 1, and the
other (k − 1) conditional probabilities ar close to 0. Bensmail et al. (1997) quantified this
notion by defining the uncertainty of the classification of object i to be

ui = 1−max
k
zik.

The uncertainty of the complete clustering may then be estimated by averaging over the
uncertainty of all objects.

For large data sets, the usual strategy is to apply model-based clustering to a random
sample from the data set of a size that can be clustered comfortably (Banfield and Raftery
1993; Fraley and Raftery 2002b). The parameters of the clusters, found in the sample, can
be used to classify the remainder of the objects by the application of a single E-step for
the entire data set, which is very quick.

3 Sampling Methods

The segmentations in Figure 1 were obtained by clustering ten random samples of 500 pixels
each to obtain ten sets of cluster parameters, and for each random sample performing one
E-step to classify all other pixels into one of the clusters. The variability that is so apparent
can have several causes: first, the sample size may be too small, so that clusters are not
well described. In particular, there is a danger that one misses small clusters with sample
sizes that are too small. To investigate the effect of sample size, five different sample sizes
are compared: 500, 1000, 1500, 2000 and 2500 pixels, respectively. With current software
and hardware, 2500 pixels can be clustered within a reasonable time.

Second, there may be a problem in going from the clustered sample to a complete
segmented image. We will compare four strategies. The strategy described earlier, applying
one E-step using the cluster parameters from the clustered sample, will be called strategy I.
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Figure 2: Strategies to apply model-based clustering for large data sets. The dashed box
contains operations on the sample only. INIT: initialization by model-based hierarchical
clustering; EM: application of the EM algorithm to find cluster parameters and classifica-
tions (max. 100 steps); MS: model selection; EM1: one iteration of the EM algorithm to
classify pixels not in the sample.

It may be beneficial to do several EM steps on the complete image; this is feasible in terms
of computational cost. The second strategy (II) extends strategy I by doing an additional
EM optimization for at most 100 steps for the selected model, taking into account all pixels.
The sample, however, may be too small to pick the correct model. The third strategy (III)
therefore does at most 100 EM steps for the five best models, selected on the basis of
the training set, and from these five eventually selects the best using the whole data set.
Finally, the fourth strategy (IV) uses the sample only for the initialization, and does 100
EM steps for all models considered. Only then is the best model selected. Strategy IV
can be viewed as a gold standard, but it is much more computationally expensive than the
other ones. The four strategies are summarized in Figure 2.

Each experiment is performed ten times with different random samples; strategies I-IV
were implemented in exactly the same way for each experiment.

4 Data and Simulations

4.1 Assessment of Results

Several criteria are used to assess the effects of the sample size and the strategy. One aspect
is the stability of the clustering: ideally, the results should be independent of the initial
sample. This means that the models selected in the ten repeated experiments should be
similar, with, ideally, the same model being selected in most or all of the experiments. It
also means that, even if there are differences between the selected models, the final classi-
fications should be similar. The latter is assessed by calculating the adjusted Rand index
(Rand 1971; Hubert 1985). One can also consider the likelihoods of the final segmenta-
tions. Some samples may lead to local maxima which may be easily recognized. This gives
an indication of what fraction should be used in the training phase and what strategy is
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Figure 3: The three data sets, plotted in order of increasing size. The T1-weighted MRI
image of a patient with a brain cancer behind the left eye (left), an image of a St. Paulia
(middle), and a false-color image of the remote sensing data of the Duursche Waarden
(right).

best.
A second aspect is the accuracy of the segmentation: how similar are the estimated

clusters to the “true” clusters? We use simulated data to assess this accuracy, which
depends on sample size and clustering strategy. Since we know the “correct” model, we
can count the number of times the correct model is picked under the four strategies and
with the varying sample sizes. Also, we can simply count the errors in the classifications,
since the “true” classification is known. Again, the adjusted Rand index is used to quantify
the agreement between cluster labels and “true” labels.

4.2 Data

Three real data sets will be used. The first is a set of four congruent MRI images (T1-
weighted, T2-weighted, proton-density and gadolineum-enhanced) of a patient with a brain
tumour. In this data set, uninteresting regions (eyes, the skull and the region outside the
head) have been removed, leaving 23712 pixels. The T1-weighted image is depicted in the
left plot of Figure 3. The second data set is an RGB image of a St. Paulia flower with 268
columns and 304 rows; again, pixels from the background have been removed so that the
data set has 45656 pixels. The RGB image is plotted in Figure 3 (middle plot). The final
data set (RS) is a 256 by 256 remote sensing image of an area in The Netherlands, the
Duursche Waarden. It is recorded by an airborne CASI scanner, and consists of 9 spectral
bands. A false-color image is shown in the right plot of Figure 3. (Bands 6, 3 and 1 are
used for red, green and blue, respectively.) The vertical discontinuity, slightly left of the
center, is due to the fusion of two flight lines.

4.3 Simulation Design

Four data sets were simulated by randomly drawing from a series of multivariate normal
distributions obtained from clustering the MRI images. The first pair of two simulated data
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sets (Simul12 and Simul12N) was based on the model that led to the highest full-image
segmentation loglikelihood in strategy I (N=2500): (VEV,12). This is the VEV model
with 12 clusters. From the model parameters, 30.000 points were generated randomly (in
four dimensions, like the MRI data set). The Simul12N data set was derived from the
Simul12 data set by replacing five percent of the pixels by uniformly distributed noise.

The second pair of simulated data sets (Simul6 and Simul6N) was based on a model
with fewer clusters, in this case the (VEV,6) model (MRI, N=500, sample 7). Again, in
the noise data set (Simul6N) five percent of the original pixels were replaced by uniformly
distributed noise. In modelling the noise case, our initial estimate of the noise is based on
the “true” noise, so that this is the best possible initialization. In practice, an imperfect
initial estimate of the noise is likely to lead to a decrease in accuracy.

4.4 Software and Hardware

All experiments were performed in R (Ihaka and Gentleman 1996) version 1.6.0, using the
2002 version of mclust by Fraley and Raftery (Fraley and Raftery 1999; Fraley and Raftery
2002a). Mclust considers ten parametrizations of the cluster covariance matrices (two
spherical models, four diagonal models and four ellipsoidal models) (Fraley and Raftery
2002a). Adjusted Rand indices and associated plots are programmed in R. Scripts for the
application of strategies I–IV are available as supplementary material
(www.sci.kun.nl/cac/people/rwehrens/software).

We used an i686 (Pentium III, 1.0 GHz) computer, running RedHat Linux (kernel
version 2.4.18-4smp). The stability of the EM calculations was checked by performing EM
runs (maximally 100 steps) on a data matrix with permuted rows (RS data, so 65,536
rows), starting from models initialised on ten random samples of 500 pixels each. In all
cases, differences between loglikelihoods of the unpermuted and permuted data were on the
order of 10−8, so there seem to be no stability problems in the EM steps. For strategies II
and III, less than 100 EM steps were needed to reach convergence in all cases; for strategy
IV, this was the case for all relevant models. Occasionally, inappropriate models did not
converge within 100 steps.

5 Results

For all data sets, we considered clusterings with 1 to 20 clusters, using strategies I–III.
Because of time constraints, fewer possibilities were considered for strategy IV: in the MRI
case 4–18 clusters, for the RS data set 4–11 clusters, and for the St. Paulia image 3–15
clusters. For the smaller data sets, all ten model parametrizations available in mclust

were considered in strategies I–III; for the RS data set, only the four most elaborate models
were considered (EEE, EEV, VEV and VVV). For strategy IV only the EEV, VEV and
VVV models were considered.

7



Table 1: Most frequently selected models in strategy I. The columns indicate different
sample sizes. Numbers in brackets indicate how often a particular model was selected.
The true model for Simul12 and Simul12N is VEV12; the true model for Simul6 and
Simul6N is VEV6. Simul12N and Simul6N contain 1500 noise points (5 percent).

Sample size 500 1000 1500 2000 2500
MRI VEV6,7,9 (2) VEV7 (5) VEV10 (3) VEV7 (3) VEV8 (3)
Paulia VEV4 (3) VEV7 (3) VEV7,9 (3) VEV8 (4) VEV9 (4)
RS VVV4 (8) VVV6 (5) VVV6 (9) VVV6,7 (5) VVV9 (4)
Simul12 VEV4 (4) VEV8,9 (4) VEV7,8 (3) VEV10–13 (2) VEV12 (5)
Simul12N VEV4 (3) VVV5, VEV7,8(2) VEV9 (5) VEV9 (4) VVV8, VEV9 (3)
Simul6 VEV6 (5) VEV6 (5) VEV6 (7) VEV6 (6) VEV6 (8)
Simul6N VEV5 (4) VEV6 (4) VEV6,7 (4) VEV6 (6) VEV7 (6)

5.1 Stability of Model Selection

The images in Figure 1, obtained by applying strategy I, with a sample size of 500, cor-
respond to seven different clustering models, among which the (VEV,6), (VEV,7) and
(VEV,9) models occur twice. Results like this are summarized in Table 1. Sample sizes
range from 500 to 2500.

For all images, the complexity of the selected model (i.e. the number of clusters) is
observed to increase with the sample size. Apparently, more clusters are needed to describe
the sample. This suggests either that some smaller clusters are missed with the smallest
samples, or that the data are not exactly normally distributed and that including more
Gaussian components in the mixture leads to a better fit. The effect is clearest for the RS
data but is also found in the MRI and St. Paulia images, although it is not so clear from
Table 1: the variability in the selected models is much larger than with the RS image. In
the case of a sample of 500 pixels from the St. Paulia image, models with 3–6 clusters were
selected; in the case of samples of 2500 pixels, the models selected had 7–15 clusters. The
true model for the simulated data sets Simul12 and Simul12N is known to be (VEV,12),
and models close to this are selected only for samples of at least 2000 pixels. On the other
hand, all strategies and all sample sizes are able to pick the correct model (or a close one)
for the VEV,6 models of the Simul6 and Simul6N data sets. Model selection for strategy
II is the same as for strategy I, so we do not consider strategy II further in this section.

Strategy III consists of doing EM on the whole image for the five models with the
highest BIC values for the sample. This invariably leads to more complex models than
strategy I. If a VVV model is selected in strategy I, strategy III will typically select a VVV
model with one or two extra clusters or, less often, a VEV model with 5-6 extra clusters;
if a VEV model is chosen by strategy I, strategy III will pick a VVV model with the same
number of clusters, or with one or two extra clusters, or a VEV model with more clusters
(see Table 2).

The general trends, however, do not change: a larger sample leads to a more complex
cluster model, and the variability in the models is much smaller for the RS image than
for the other two images. If anything, the variability in the selected models is larger in
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Table 2: The most frequently selected models in strategy III. See caption of Table 1.

Sample size 500 1000 1500 2000 2500
MRI VEV9 (4) VEV10 (5) VEV11 (3) VEV13, VVV8 (3) VEV10,12,13, VVV10 (2)
St. Paulia VEV6 (4) VEV10 (3) VVV8 (3) VVV9 (2) VEV14 (4)
RS VVV5 (7) VVV8 (8) VVV9 (8) VVV10 (5) VVV10,11 (5)
Simul12 VEV6 (4) VEV10 (5) VEV11,13 (3) VEV12,13 (3) VEV12,14 (3)
Simul12N VEV6 (6) VEV9 (5) VEV10 (5) VEV11(4) VEV9, VEV11,12 (2)
Simul6 VVV6 (4) VVV6 (5) VVV6 (7) VVV6 (5) VVV6 (8)
Simul6N VVV6 (3) VVV6 (3) VVV7,8 (3) VVV6(4) VVV7 (4)

Table 3: The most frequently selected models in strategy IV. The range of models consid-
ered is much smaller than with the other strategies (see text).

N 500 1000 1500 2000 2500
MRI VVV18 (6) VVV18 (8) VVV18 (7) VVV18 (8) VVV18 (5)
St. Paulia VVV15 (6) – – – –
RS VEV15 (5) – – – –
Simul12 VEV13,14 (3) VEV13 (4) VEV15 (5) VEV13 (5) VEV13 (3)
Simul6 VEV6 (7) VEV7 (5) VEV6 (7) VEV6 (7) VEV6 (8)

strategy III than in strategy I. For the simulated data with 12 clusters, small samples lead
to an underestimation of the complexity of the model. For samples of 1000 pixels and
more, the models selected are approximately correct; this is an improvement compared to
strategy I. The simulated data with six clusters seem to be overfit slightly: instead of a
VEV model a VVV model is usually selected.

Strategy IV is the most computationally expensive one; the sample is used only to
initialize the clustering, and EM is performed using the full data set for all models. The
results, using a limited set of models and a restricted range of numbers of clusters, are
summarized in Table 3. For the Simul6 data set the correct model is retrieved in most
of the runs; the model selected for the Simul12 data set is usually slightly more complex
than the model that generated the data. In the real data sets, in almost all cases the most
complex cluster model possible is selected.

5.2 Stability of Segmentations

More important than the actual models selected is the question of how different the seg-
mentation of the complete image is for the different samples. To assess this, for each data
set the clusterings from the ten samples are compared with the adjusted Rand indices; the
result is the mean value of all possible 45 comparisons. To present an intuitive calibration
of the scale of the adjusted Rand index, a graphical impression is presented in Figure 4.
The comparisons are between the first and second, third and second and seventh and sixth
segmented images of Figure 1, respectively. The adjusted Rand index of 0.73 for the last
comparison is the highest found in this set of segmented images. One can see an obvious

9



6 3 2 4 7 8 1 9 5

1 2 3 4

AdjRkl = 0.38

1 vs 2

4 2 1 3

1 2 3 4

AdjRkl = 0.41

3 vs 2

4 1 6 3 2 5

1 2 3 4 5

AdjRkl = 0.73

7 vs 6

Figure 4: Adjusted Rand indices for the comparison of segmented images from Figure 1:
1 vs. 2; 3 vs. 2; and 7 vs. 6. Colors are based on the segmentation of images 2, 2 and 6,
respectively. Each line corresponds to at most 100 pixels.

disadvantage of the adjusted Rand index: when the number of clusters differs a great deal,
as in the first example, the index will often be quite low. However, there is a good corre-
spondence between several clusters in the classification of sample 1 with individual clusters
in the segmentation based on sample 2. In comparing segmentation 3 with 2, one clearly
finds mixed clusters, which leads to an adjusted Rand index more or less equal to the first
comparison.

Means and standard deviations of adjusted Rand indices for the different strategies are
shown in Figure 5. For the real data sets, mean agreements based on raw classifications
are better for strategy II. Strategy III shows levels of agreement similar to or less than
those for Strategy I. This is caused by the more complex models that are selected and the
larger variability in selected models. In the MRI data, strategy IV even leads to the lowest
agreements of all the strategies.

For the simulated data, strategy I is again the worst, but now the differences between the
other strategies are negligible. Again, sample size does not seem to make much difference.
Even with perfectly Gaussian data, there will be variability in the eventual segmentation
with all three strategies considered.

To investigate whether “uncertain” classifications are more likely to be variable, we
compared the clusterings of the ten replicate segmentations in each experiment as a func-
tion of the pixel uncertainty. For a set of five thresholds (0.05, 0.1, 0.2, 0.35 and 0.5,
respectively) we only included those pixels with uncertainties smaller than the threshold
and calculated the agreement between the clusterings. The results are shown in Figures 6
and 7, as mean adjusted Rand indices. In general, agreements increase when taking only
“certain” classifications into account. This means that the clusters are located at approx-
imately the same positions, and that the largest differences between repeated clusterings
are at the edges, as may be expected.

However, when eliminating uncertain pixels, a large part of the image remains unclas-
sified; for the threshold of 0.05, the proportions of pixels eliminated in the MRI, St. Paulia
and RS images are typically close to 70, 60 and 90 percent, respectively. For the next
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Figure 5: Agreements between clusterings from ten different samples, indicated by mean
values of the adjusted Rand index. One standard deviation above and below the mean
value are also shown.
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Figure 6: Classification agreements for the real data sets, as measured by mean adjusted
Rand indices. The fraction of pixels taken into account is governed by the uncertainty of
the classification (y-axis): the label 0.05, e.g., means that only pixels that are classified
with an uncertainty smaller than 0.05 in all ten replicated segmentations are taken into
account. Sample size is depicted on the x-axis.
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Figure 7: Classification agreements for the simulated data sets, as measured by mean
adjusted Rand indices. See caption of Figure 6.
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Figure 8: Stable classifications with adjusted Rand index greater than 0.9 (strategy II):
for the three images, the uncertainty thresholds are .35, .2 and .5, respectively.

threshold we considered, 0.2, these numbers are 20, 10 and 60 percent. They do depend
on the strategy employed and the sample size: typically, a larger sample, or a more com-
plex strategy, will lead to more clusters and hence to larger uncertainty. Moreover, several
clusters will disappear completely when our uncertainty threshold is severe. For the MRI
and St. Paulia data sets, this happens for uncertainty thresholds of 0.2 or lower; the RS
data set almost never loses complete clusters. As an example of which pixels are clustered
with a low uncertainty, Figure 8 shows clusterings obtained with strategy II for the three
real data sets, in a situation where the mean adjusted Rand index is at least 0.9: for the
MRI image this corresponds to u < 0.35, for the St. Paulia image u < 0.2 and for the
RS image u < 0.5. In the MRI image, the tumor and the cerebrospinal fluid clearly are
stable clusters. The hearts of the flowers together with some remaining background, and
shades on leaves and background form stable clusters in the St. Paulia image, and almost
all pixels are part of a stable clustering in the RS image.

The loglikelihoods of the final segmentation for all sample sizes are summarized in
Figure 9. Strategy IV leads to the largest likelihoods, strategy I the smallest. The difference
between strategies I and II is completely due to the extra EM steps. The increase is larger
with smaller samples; there is more room for improvement there. Also the differences
between replicated runs are larger with smaller samples. In terms of higher likelihood,
there seems to be little gain in having samples larger than 2000 objects.

For the simulated data, the likelihood of the “true” classification is known (indicated
with a gray line in Figure 9). For the no-noise cases, all strategies seem to converge to
these values with increasing sample size. The convergence is faster in Simul6, where fewer
classes are present: there, all strategies except strategy I perform optimally for samples of
size 1,000 or greater. In some of the noise cases, likelihoods higher than the likelihood with
the true noise classification were found. This is to be expected: some noise points may
lie very close to a “true” cluster and when classified to that cluster will lead to a higher
likelihood.
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Figure 9: Loglikelihoods of the final model selections. Means are plotted for the ten
repeated samples; plus or minus one standard deviation is given as well. The gray lines in
the simulated data sets show the loglikelihood of the “true” solution.
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Figure 10: Agreement with “true” class labels for the simulated data sets (adjusted Rand
index).

5.3 Accuracy

With the simulated data it is possible to assess the accuracy of the clusterings. The number
of clusters as well as the cluster model are known, and cluster labels have been preserved.
Measuring the agreement between the estimated and the “true” class by the adjusted Rand
index, leads to the summaries depicted in Figure 10. The values are rather low, and more
or less independent of sample size. More complex strategies do slightly better for small
sample sizes, but the differences are small.

Again, it is the less certain pixels that cause these low agreements: distinguishing
between pixels classified with different levels of uncertainty, it appears that the most certain
pixels agree very well with the true classification (see Figure 11). For the Simul12 data set,
strategy IV for all sample sizes leads to values of the adjusted Rand index higher than 0.9,
provided the uncertainty is below 0.1. Strategy IV shows no dependence on sample size:
the other strategies show better agreement when the sample size increases. Strategy III,
with sample sizes equal to or larger than 2000, also reaches adjusted Rand indices above
0.9, but only for pixels with an uncertainty lower than 0.05. Strategy I at best reaches
0.85 with the largest sample and the smallest uncertainty. In contrast, in the less complex
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Table 4: Approximate timings (MRI data set) for the different strategies (minutes, user
time, Pentium III 1GHz processor). In this table, only the three most elaborate models
(EEV, VEV and VVV) are considered with 4–14 clusters. The numbers cited are means
of ten repeated clusterings.

Strategy I Strategy II Strategy III Strategy IV
N=500 0.4 0.6 1.6 23
N=1000 1.0 1.3 2.5 25
N=1500 1.7 2.0 3.7 25
N=2000 2.8 3.0 4.6 24
N=2500 4.1 4.2 5.8 24

Simul6 data set, all strategies achieve near-perfect matches. In this data set, the sample
size does not matter much: only N=500 seems to be a bit too small for strategies I–III.

Adding noise generally decreases the agreement. Still, for the Simul6N data set, agree-
ments better than 0.9 are obtained for all strategies at uncertainties smaller than 0.1;
for strategies I and II, the sample size should be at least 1500 pixels. For strategy III,
the sample size is not very important. The most difficult case is the Simul12N data set:
mean agreements with the “true” classification are in all cases less than 0.9. The general
trend, however, is clear again: larger samples show better agreements, and more expensive
strategies (e.g. strategy III) are better than cheap ones (strategy I).

The main cause of the low agreements with the “true” values is not poor performance
of the clustering algorithm, but, rather, the large overlap between clusters. This follows
from the following experiment: if we take the “true” cluster parameters of the simulated
data sets, and classify all points using one E-step, then the agreement with the “true”
classification should form an upper bound of what can be achieved. Doing this, we find
values that are almost equal to the results of clustering. As an example, for the Simul12
data set the adjusted Rand indices calculated in this way for pixels with uncertainties
lower than 0.05, 0.1, 0.2, 0.35 and 0.5, are 0.96, 0.92, 0.82, 0.70 and 0.60, respectively,
which agrees quite well with what can be achieved by the best strategies (strategy IV, and
strategy III with a sample size of 2000 or larger).

5.4 Timings

To give a very rough indication of the computational efforts associated with the different
strategies, Table 4 presents timings for the MRI data set. The timings given here are
approximate and serve only as an indication; in particular, one should be aware that R
is an interpreted language, the scripts used are not optimized for speed, input/output is
performed, and the load of the computer may have varied from time to time.

Clearly, strategy IV is by far the most expensive strategy in terms of computing time.
As expected, timings for strategy IV are not dependent on the sample size (and as we have
seen, neither are the results). The differences in timing between the other three strategies
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Figure 11: Agreement with “true” class labels (adjusted Rand index), dependent on the
certainty of the classification.
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are not very large: typically, strategy III takes only 1-2 minutes more than strategy I.

6 Discussion

We have proposed and experimented with several strategies for model-based clustering
with large data sets by first applying model-based clustering to a sample of the data, and
then extending the results to the full data set. There are large differences between the
strategies employed. The simplest strategy, strategy I, performs worst. Overall, strategy
III seems to strike a good balance between computing time and quality of results: for the
data sets and computational setting considered here it takes only one or two minutes more
than the fastest strategy, strategy I, but leads to higher likelihoods and better stability
in classifications than the simpler strategies. Moreover, with strategy III, there is little
advantage in having sample sizes larger than 2000 objects. Strategy IV, on the other
hand, is considerably slower, regardless of sample size. Although in simulated cases the
correct model was picked in essentially all cases, for the real data there was a tendency to
pick a larger number of components, possibly caused by non-normality of the data.

Based on the results of the real and simulated data sets, strategy III with a sample size
of 2000 seems to be the best of the approaches we have investigated: the loglikelihood of
the final segmentation in this case was close to the “true” value, and agreements between
different runs are also good, especially when looking at the more certain pixels. The gold
standard, strategy IV, does not lead to much better results but takes at least five times as
much computing time for the image data and simulations we considered.

Several extensions of the sampling approach are possible. First of all, one could use
stratified sampling instead of random sampling. With images like the ones analysed here,
one could focus on regions with a large variations, or the region of interest (e.g. the tumour
region in the MRI image) and sample more densely in those areas. In cases like the RS
image, one could decrease the number of pixels picked from a large, clearly recognisable
field and concentrate more on regions with small objects. Although the samples would not
be representative of the complete image, they may lead to better estimates of the number
of clusters and cluster parameters.

Another potential improvement is not to rely on a single clustering, but to perform
multiple clusterings from different random samplings, much like the setup of the experi-
ments in this paper. If the best (e.g., based on the loglikelihood of the final segmentation)
of five clusterings was picked, the conclusions presented here would still hold. In general,
the improvement found with a more expensive strategy is larger than the improvement
resulting from repeating the clustering several times with the same cheap strategy.

The one-step approach discussed here is attractive in its simplicity and speed of execu-
tion. Several other approaches to dealing with large data sets have been proposed. Fayyad
and Smyth (1996) and Maitra (2001) propose forms of iterative sampling, where the second
sample is taken from points that are poorly described by the clusters found so far. In other
words, the points that are well described are removed from the data set and the remain-
der is clustered again. This may continue for several cycles; eventually a large number of
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clusters is found. Several heuristic procedures are then used to merge clusters. Fraley and
Raftery (2002) propose a similar idea, constructing the sample in the second iteration from
a stratified sample of well-described points and poorly described points. This provides a
way of avoiding the large numbers of clusters often found by the other iterative sampling
methods.

Alternatively, the sample may be first partitioned into a large number of clusters using
a simple clustering method, after which agglomerative hierarchical model-based clustering
is initialized with these clusters rather than with the individual data points. Posse (2001)
proposed a method based on the minimum spanning tree for obtaining the initial partition.
A different approach called fractionation was proposed by Tantrum, Murua, and Stuetzle
(2002) in the context of hierarchical model-based clustering, where the complete data set
is split up randomly into smaller sets, which are clustered individually. The process is then
repeated, but with the smaller sets formed by aggregated clusters rather than randomly.

Although these alternative methods may have an edge over the approach recommended
in this paper when it comes to recognizing small clusters, any advantage would come at the
expense of greater complexity (e.g. more user-defined parameters) and extra computation.
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